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ABSTRACZT

We have developed a new scheme to identify and suppress
hourglass patterns. Thz schem~ nas been lncorporated into a
two-dimensional (D) Lagrangian hydrodynamic (hydro) code, and
extensive calculations have been performed to demonstrate the
effectiveriess of our treatment.

Hourgiassing 1s a problem frequently encountered in
numerical simulations of fluid and solid dynamics. The
problem arses because certain volume~preserving distortions
of cell snape produce no restoring forces. The result is an
unrestricted drifting mode in the velocity field that leads to
severe distortions of the computational mesh. These distor-
tions cause large errors in the numerical approximations of
the equations c¢f motion. The drift may also allow adjacer:
vertices to get 'ery close to each other. This results in the
vomputational time step basec on a Tourant stability condition
to become very small, effectively halting the calculation.

We describe a mathematlnal rformallsm that identifies and
sclect {vely Jamps the hourglass patterns. The damping is con-
structed to preserve the physlcal asprets of the solution
while maintaining a reasonable computational mesh. We furt.er
describe the impiementation of our schemer {in a 2D hydro code,
and show the relative improvement in the results of six dif-
ferent test problems that wo alculated,

1, INTRODUCTION

Hourg!assing i{s a problem frequently encountered in



numerical simulations of fluid and solid dynamie¢s. The
problem arises because certain volume-preserving distortions
of cell shape produce no restoring forces. In a Lagrangian
calculation, where the cell vertices move with the local
material velocity, the result is an unrestrainec drifting mode
that leads to severe distortion of the mecn, The hourglassing
distortion in particular causes large errors in the numerical
approximations of spatial gradients in the equations of motion
(1). The drift may also allow adjacent vertices cn the mesh
to get very close to each other. This causes the computa-
tional time step based on a Courant stability condition to
become very small, effectively halting the calculation.

An hourglass velceity pattern ls shown in Fig. 1-a for a
regular mesh, where velocities are calrculated and stored at
cell vertices. At a later time shown in Fig. 1-b, the mesh
has deformed. However, the volume of each celil 18 unchanged
in time. Consequently, the density remains constant in each
vell and no work has been done. Since pressure depends only
on density and internal energy, the pressure fleld i{s also un-
changed. Thus this velocity pattern produces no restoring
forces and will persist, leading ultimately to a bowtied mesh.
On more irregul)ar mesh, we can decompose a general velocity
field into a sum of independent patterns, one of which repre-
sents hourglassing. The key feature of an hourglass pattern
i{s a giobal deformation that does not change the volume of any
cell. We shall show that the existence of such a pattern is a
topological property of the mesh - i,e., of cells havirng four
sides = and does not depend on the details of the differencing
acheme.

Physically, the continuum equations of motion &are w=ll-
posed, which means that there are exactly as many equatlons as
unknowns., In the process of dlscretization, this balance has
been upset. On a quadrilateral cell, the degrees of freedom
exceed the constralnts. In section 2, we review the modes of
motion of a 2D quadrilateral cell and we identify the numbe:r
of degrees of freedom associated with the motion of s.uch a

(a) (b)
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Fig. 1(a) Animually rectangular mesh Fig. 1(b) The same mesh at a later time.

with an hourglass velocity pattern The motion has produced no restonng
forces. The motion will continue un-
restrained and will eventually cause
bowtied celly




cell. Then we develop a simple mathematical formalism to
identify and selectively damp the hourglass!ng mcdes in sec~
tion 3. The particular form of the filter depends on the
details of the differencing scheme. 1In section 4 we exhibit
one realization of the filter for a common cholce of spatial
differencing (2). Our filt-r |Is local, explicit and
remarkably effective. 1In section 5 we discuss results of six
pairs of calculations. 1In each pair, one with the filter and
the other without, we show that the mesh is considerably im-
proved in the filtered calculations resuiting in considerably
reduced protlem running times., We aluo compare the physical
solutions in each pair to show that the filter does not alter
the solution in any aspect that can be considered physical.

2. MODES OF CELL MOTION
We consider a typical quadri{lateral computational cell {n
Fig. 2. 1n a two-dimensional geometry, such a cell has eilght

degrees of freedom, that is, a vertical velocity (V) and a
horizontal velocity (U) for each of the four vertices,

va V2
- |
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Fig 2 A quadnlaieral computaiional cell

Instead of corisidering the individual components, we can
conaider patterns made up of parts of the veloclities of
several vertices in Fig. 3. These patterns are equjvalent to

the degrees of freedom; again there are eight independent pat~
ternn,

) () )
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Fia ). Some patierns of cell moton (a) uniform hornizontal translatiu. (h)
hor.zontal strain and (¢) shear



We identify the physicsl patterns in the following way.
Any physical motion that changes the shape or volum= of a cell
should produce a restoring force. Conversely, any ceil defor-
mation that produces no restoring force i{s nonphysical.
Nonphysical cell deformation is exemplified by the hourglass~
ing.

Allowing for spatially constant strains in & ceil, we can
identify six of the patterns with physi- il modes of motion and
also with mathematici.l objects. The physical modes are

one pattern of horlzontal translation
one pattern of vertical transiation
one pattern ¢f rotation

one pattern of horizonta. strain

one pattern of verti{cal strain

one pattern of shear strain

The restoring forces in a solid are stresses that arise be-
cause of strains. The strains are the time integrals of
strain rates. The straln rates are just the spatial gradients
of velocity. Therefore, we jdentify the 8ix degrees of
f'reedom with the six mathematical objects

U, V, au/ax, ausay, av/ax, and 3v/ay . (1)
3. MATHEMATIZAL FORMALIS™ FOR THE FILTER

To construct a mathematlical formalism for the filter
that expressec these idea, we begin by conaldering an eight-
dimensionai vector spacr. The velocity components of the cell
vertices can be represented as vector in this space

V = (U1, U2, U3, UL, V1, V2, V3, V4) (2)
The six degrees of freedom can now be represented in terms of
vector operators in this space. For example, If the uniform

motion U of a cell (the degree of freedom associated horizon-
tal translational invariance) {s defined as

U = 258 (U1sU2+U3sLIN) (3)
then a veclor operator f1 can be defined so that
Oail oV (4)

Here {1 « 28% (1 1, 1,1,0, 0, 0, 0,) and the dot repre-
sents the {nner product of the vectors.

The velocity gradient: are also linear forms Iin the ver-
tex velocitivs and cyn br expregsed as inner products. We
def'ine the vector L1, Lo, L3, LU, L5, and Lb, by

(I AR Vatg2.?
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U/3x = L3 « ¥ aV/3x = Lb »

¥
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oU/3y = L5 = V oV/0y = L6 - (5)
A specified realization of the vectors will be given in
the example that follows in the next section. At this point,
it is important to realize that the vectors depend only on the
particular form of the difference approximations used in the
code.

The vectors E1 through o6 correspond to the physical de-
grees of freedom of the cell However, they do not completely
Span the eight-dimensional vector space of possible modes of
cell motion. There are Lwo acdzZitional vectors, L7 and L8, re-
Quired to span the apace. These are easily congtructed by
requiring them to orthogonzl to the set L1 through L6, and to
each other. The patterns L7 and L8 correspond to motions that
deform the cell and yet do not produce restnring forces. By
our definition, they are the nonphysical modes and in fact
correspond to the hourglass patterns.

We are now prepared to take the fingl step. By selec-
tively filtering the modes proportional to L7 and 8 we can
eliminate the hourglassing without altering any of tho forces
in the calculation. Now the eight operators L! through LB are
a linearly independent set, and 80 span the eight~-dimensional
Space of possible velocity vectors. Also any vector in this
space can be expanded in a complete set

Vezity -V Ly Ju1, 2. .6 (6)
Vai -0y« Dire (s . His) alpha (7)

Here, alpha represents the fraction of the hourglassing that
we rllggr from the velocity field on each cycle. The vectors
L7 and L8 are chosen to have unit length.

Alpha i3 a dimensionless number that can be thoughc of as
the ratio of the time atep At to a relaxation time tr. The
inverse of alpha is the number of computational oycles to
achjeve complete relaxation. Since each vertex is shared by
four cells, and the filter is applied separately to each of
thess, complete relaxation in one cycle would mean choosing
alpha = ,25. Larger valu®s than .2 would overcorrect and
lead to instablility. However there are other reasons to
choose even smaller values of alpha.

In our analysis, we have treated the cell as {if {t ex-
isted in isolation from the rest of the mesh. However the
effects of Milter applied separately to each cell do overlap
since each node ia shared by four cells. Since the hourglass-
ing is a global pattern in which cell volumes do not change,
it is clear that the unchnatrained degrecs of freedom are not
two per cel), but only two for the entire mesh. The



superposition of filtering for each cell approximates a single
filter for the entire mesh,

In practice, the boundary and corner nodes are filtered
two times and one time respectively, whereas the filter is ap-
plied to the inner nodes four times. This filtering proceass
is efficiently done by using a fully~vectorized DO loop which
sweeps the cells in the radial direction first and then
proceeds to the axjial direction for a cylindrical geometry.

The effectiveness of the fllter is due to the way in
which corrections from the four cells sharing a node lnteract.
Qualitatively, they reinforce each other for the part of the
hourglassing that is global and tend to cancel each other for
other parts of' the the global velocity field. To enhance this
cancellation, it is important that alpha be chosen to be con-
stant over the entire mesh, rather than varying from cell to
cell, Also, we have tried allowing alpha to vary from cycle
to ¢ycle, but find this i3 not as effective, nor as easily
implementad, as simply fixing alpha for the entire calcula-
tion.

Because the filter is only approximate, we should use as
sm:ll a value of slpha as is sufficient to control the
hourglassing deformation. A full answer to how amall alpha
can be chosen would require a detailed understanding of the
source of the hourglassing. Pratically aspeaking, we have
found choosing alpha in the range

.01 ¢ alprha < .05
works for most calculations.

4, A SPECIFIC RELIZATION OF THE FILTER
Consider a typical spatial differencing for a mesh of ir-

regular quadrilateral cells in cylindrical geometry (2). For
the translational terms we choose

U/R = (U14U2+U3+U4)/(R1+R2+R3+RY)

V = 0.25 (VIeV2eV3eVh) (8)
For the spatial gradients, we usc

ou/ar = [(U1=U3)(22=-24) ¢ (U2-UU)(23~21))/2A

oU/9z = [(U1=U3) (Prl=r2) + (UD2=U4)(r1=-r3)]/2A

av/ar = [(V1=V3)(z2=24) ¢ (Vi=vu)(z3=21)]/CA

aV/79z = [(V1=V3) (rid=r>) + (Vi=VU)(r1-r)1/]A (9)



where 2A = (r2-rl)(z3=z1) + (r3-r1)(z4~z3) is twice the area
of the cell. By inspection, we write

£1 - 0.25¢(1, 1, 1,1, 0, 0, 0,)

L2 = 0.25(0, 0, 0, 0, 1, 1. 1, 1)

E3 = (2z2-z4, 23-21, zld~22, z1~23, 0, 0, O, 0O) (10)
L4 = (0, 0, 0., O, 2z2-2z4, 2z3-21, z4-2z2, z1-23)

L5 = (r4~r2, ri=r3, r2-rl, r3-r1, 0, 0, 0, 0)

6 = (0, 0, 0, O, PU=r2, r1-r3, r2-rd, r3-r1)

Then it is easy to very that a (nonunique) choice for the
hourgiass vectora 1s

L7 = 0.5(-1, 1, =1, 1, 0, 0, 0, O)
L8 = 0.5(0, 0, 0, 0, =1, 1, =1, 1) (11)
5. COMPARISON AND DISCUSSION OF TEST PROBLEMS

In verifying the effectiveness of osur hourglass lilter,
we have run more than one hundred test problems with and
without the fiter. We will discuss the results of six typical
problems in this section.

Test problem number one consist of a steel ball, and a
concent.ric steel shell with a vacuum between them, Injitally
the inner ball has radius 0.5 em. The shell has an inner
radius of 1,0 em and an outer radius of 2.0 ¢m. The ball {s
stationary and the shell i{s imploded spherically with a con-
atant velocity of 100 em/ms. The shell collides with the ball
at approximately 0.0027 ms. Then the ball and shell rebound
together as shown in Fig. 4. The interface between the ball
and shell {s treated as a free slip surface after collisioun.
Figure 4-a shows that the hourglass filter prevents appreci-
able hourglassing and also stabilizes the slip interface.
Figure U~b, calculated without the filter, shows classical
hourglass ratterns. Free slip interfaces seem to be espe-
clally susceptibtle to hourglassing, probably because the nodes
on the {nterface have fewer constraints.

The filtered calculatlion better preserves the spherical
symmetry expected in the calculation. However, the average
redius of each sphere of nodes (represcnting Lagrangian points
ir. the material) is {dentical in both calculations, supporting
our claim that the hourglass fi{lter dves nol alter the physi-
cal aspects of the solutlion.
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0,000 3,000 6000 0000 3000 6,000
E+00 E-01 E-0I E+00 E-0I E-0)
Time (5.4 us)

(l:;'ft Calculations of collision and rebound of two steel balls with (a) and without
) filter

Test problem number two consists of three concentric
steel shells initially in contact with each other, A weak
shock of about 3 Kbars is generated in the middle shell along
a 45 degree line from the polar (vertical) axls. The shock
moves azimuthally toward the equator where it is reflected at
about 0.02 ma. The two interfaces between shells are treated
as free slip surfaces. Figure 5-a shows that the filter
eliminates the hourglass patterns. The position of the inter-
faces is identical in both calculations,

(a) (b)

0.000 4.000
E+00 E+00 E+00 E+00 E+00 E+00
Time (100us)

Fig. 3. Calculations of azimuthal shock with (a) and without (b) filter



Test problem number three is a shaped change with a cop-
per liner. The shaped charge is a cylinder with an outer
radius of 7 cm and with a height of 20 cm. The average thick-
ness of the copper linear is 0.5 cm and its inner radius 1is
approximately 5.5 em. The explosive 13 detonated at time
zero. Figure 6 shows part of the copper liner being ac~
celerated by the explosive at 0.045 ms. Figure 6~b shows
hourglass patterns along the polar axis, and the same time a
bowtied mesh in the tail section of the liner. There are no
bowties and no hourglass patterns in the filtered calculation
shown in Fig. 6-a.

(n) (b)

4.000
E+0I | ;

0.000 3.000 4,000 0.000 2000 4.000
E+00 E+00 E+00 E+00 E+00 E+00

Time (43 ps)

Fig. 6. Calculations of shaped charge with (a) and without (b) filter

Test problem number four consists of three coaxial
cylinders. The upper and lower cylinders are identical. They
are made of steel, 0.6 cm in radius and 0.5 cm thick.
Sandwiched between them is a smaller cylinder made of copper.
The copper cylinder is 0.1 cm both in radius and thickness.
The steel cylinders move axjally toward each other with a
relative velocity of 0.5 cm/ms. The copper disk is squeezed
and extrudes radially into the air gap. Hourglass patterns
are prominently visible along an interface between the copper
disk and the air gap in Fig. 7-b. No hourglass patterns are
manifest in Flg., 7~a when the filter is employed.
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Fig. 7. Cakulations of copper desk under compression with (a) and without (b) filter

Test problem number five simulates the impact of a solid

Alluvium is a relatively weak
The alluvium is initially a (nearly) in-

finite plane representing a river bed. The steel ball has an

initial radius of 5 cm.

The steel ball impacts the alluvium

vertically with a velocity of 500 cm/ms. Figure 8 shows the
penetration of the ball into the alluvium. No conspicuous
hourglasa patterns are visible even in Fig. 8-b. However, the
hourglass filter has clearly eliminated a mesh instability
along the slip line in Fig. 8-a.

=13,000
E+00

E+00

—soo0). .

(a)

_"Im
E+0N
0.000 2,000 4.000 0.0 000 X
E+00 E+00 E+00 E+00 E+00 E+00
Time (4.9 ys)

Fig. 8. Calculations of cullision between iteel ball and alluvium river bed with

(a) and wathout (b) filter



The flnal test problem, number six, shows a steel disk
with rigidly constrained boundaries. A strong plane shock
(approximately 8 Mbars) is generated on the top boundary and
moves vertically downward to the bottom boundary where it is
reflected. In Fig. 9-b, the unfiltered calculation shows ex-
tensive meah distortion due to hourglassing. The filtered
calculation in Fig. 9~a exhibits a clean and regu.ar mesh,
maintaining the expescted physical symmetry of a the material
motion.
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Fig. 9. Cakculations of plane shock in steel with (a) and without (b) filter

None of the test problems in this section have analytle
solutions. Howe'er, we have compared physical aspects of
solutions between the filtered and the unfilterea calcula-
tions. Thesne aspects include the position of material
interfaces, shock velocities and the jumps iIn physiecal vari-
ables across the shocks. The results of these comparisona
indicatne that the hourglassing flltcr does not change the
physcal solution if tne value of alpha the dimensionlrss ratio
of time step At to relaxation time tr = in logg than 0.06,

Cne benefit of uaing the hourplnss fllter |ls the often
large decrenae In cy2lea and hence CPU (central processing
unit) time to completr a cialrulation. Table 1 liats a com=
parlson of running times for the six test problems with and
without the filter. The saving Ln CPUJ time varlies from 0 to



75 percent. This saving ia associated with the higher time
step that is allowed with a more regular mesh. For example,
4850 cycles are required to run test problem number one to a

time of 0.0055 ms in the unfiltered cilculation whereas only
950 are required when the filter is used.

Table 1

Comparison of Running CPU (central processor unit)
Time (s) in Cray X-MP Computer

Test Problem CPU Time or (Cycles) CPU Time
Problem Time (ms) with without Saving
Number filter filter (percent)

1 0.0055 41(9%0) 163(4850) 75

2 0.1 84(7™M) 8u(721) 0

3 0.0507 208{1660) 281(32250) 26

4 0.03 293(2299) 32u(2580) 10

5 0.00% 161(336) 534(1849) 70

® 0.023 357(L500) 500(7647) 29
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